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As the basic system of the rescue robot, the SLAM system largely determines whether the rescue robot can complete the rescue
mission. Although the current 2D Lidar-based SLAM algorithm, including its application in indoor rescue environment, has
achieved much success, the evaluation of SLAM algorithms combined with path planning for indoor rescue has rarely been
studied. *is paper studies mapping and path planning for mobile robots in an indoor rescue environment. Combined with path
planning algorithm, this paper analyzes the applicability of three SLAM algorithms (GMapping algorithm, Hector-SLAM al-
gorithm, and Cartographer algorithm) in indoor rescue environment. Real-time path planning is studied to test the mapping
results. To balance path optimality and obstacle avoidance, A∗ algorithm is used for global path planning, and DWA algorithm is
adopted for local path planning. Experimental results validate the SLAM and path planning algorithms in simulated, emulated,
and competition rescue environments, respectively. Finally, the results of this paper may facilitate researchers quickly and clearly
selecting appropriate algorithms to build SLAM systems according to their own demands.

1. Introduction

Mobile robots are capable of moving around in their en-
vironment and carrying out intelligent activities autono-
mously, thus having extensive realistic applications,
including rescue works. A key enabling technology is si-
multaneous localization and mapping (SLAM) which allows
the robot to estimate its own position using onboard sensors
and construct a map of the environment at the same time.
With the SLAM technology, real-time path planning can be
performed to fulfill complex manoeuvring tasks in rescue
works.

SLAM-enabled mobile robots have achieved much
success in various scenarios. Peng et al. [1] studied the
positioning problem and implementation of SLAM for
mobile robots with RGB-D cameras. Shou et al. [2]

employed a Raspberry Pi module as the core controller and
built a mobile robot for map construction and navigation in
indoor environment. Zhang et al. [3] proposed path pre-
diction planning based on the artificial potential field to
improve obstacle avoidance. Liu et al. [4] combined the Q-
learning algorithm with the deep learning algorithm for path
planning, which enabled robots to make reasonable walking
paths under complex environmental conditions. Yu et al. [5]
applied an improved A∗ path planning algorithm to un-
manned underwater survey ships, enabling quick obstacle
avoidance and return to the preset route. However, these
studies did not take into account the impact of the rescue
environment on the SLAM algorithm. If these algorithms are
directly applied to rescue robots, it may deteriorate the
accuracy of path planning and even cause incorrect path
planning results. At present, there are still rare systems that
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can combine SLAM and path planning for indoor rescue.
*erefore, it is necessary to study the impact of the rescue
environment on the SLAM algorithm and path planning
algorithm and evaluate and select the SLAM algorithm
suitable for the rescue environment.

In this paper, we evaluated the results of some commonly
used SLAM algorithms in both simulation and real-world
environment, tested the path planning algorithms (A∗ al-
gorithm and DWA algorithm), and conducted a combined
experiment of mapping and path planning regarding the
RoboCup competition. *ese experiments revealed the
demerits of some algorithms and provided a benchmark for
subsequent algorithm improvement.

*e rest of the paper is organized as follows. Section 2
introduces the basic system structure of mobile robots;
Section 3 presents the rationale of three commonly used
SLAM algorithms; Section 4 briefly describes the A∗ algo-
rithm and DWA algorithm for path planning; Section 5
provides and analyzes the experimental and simulation
results; Section 6 gives the conclusion.

2. System Structure

*e hardware part of the robot studied in this paper is
mainly composed of motion control module, Lidar module,
vision module, power module, and industrial computer
module. *e system structure is shown in Figure 1, and the
physical map of the robot system is shown in Figure 2.

*e main function of the STM32 microcontroller is to
acquire and process wheel encoder data and gyroscope data.
Map information, path planning, depth camera, and Lidar
data are processed by the industrial computer.*e industrial
computer and STM32 are connected via USB cable to ex-
change data and instructions. *e depth camera is calibrated
by using a printed black and white checkerboard. *e
OpenCV function called by the robot operating system
(ROS) is used to extract the corner information from camera
images, and then internal and external parameters are ob-
tained through calculations [6]. *e industrial computer is
fitted with Intel Core i5 processor, 4G memory, 128G access
space, and the ubuntu16.04 system.

3. SLAM Algorithms

For a mobile robot, SLAM involves both localization and
mapping in an iterative manner by continuously fusing
various measurements from the onboard sensors [7, 8]. *e
sensor module in our system includes Lidar and depth
camera to collect environmental information as well as
internal measurements from the IMU. A 2D map is to be
generated after processing by a mapping algorithm.
Depending on the purpose of the map, different SLAM
algorithms are available. For our purpose, we will focus on
the task of path planning in real time. After various con-
siderations, we decide to study in detail three most suitable
SLAM algorithms: GMapping algorithm, Hector-SLAM
algorithm, and Cartographer algorithm. GMapping algo-
rithm is based on particle filter pairing algorithm, Hector-
SLAM is based on scan matching algorithm, Cartographer is

a scan matching algorithm with loop detection, and RGB-D
algorithm is an algorithm for mapping using depth images.
*ese several algorithms are representative and widely used
algorithms.

3.1. GMapping Algorithm. *e GMapping algorithm is a
laser-based SLAM algorithm for grid mapping [9, 10].*is is
probably the most used SLAM algorithm, currently the
standard algorithm on the PR2 (a very popular mobile
manipulation platform) with implementation available on
openslam.org. *e algorithm was initially proposed in [10],
and the main idea is to use Rao–Blackwellized particle filters
(RBPFs) to predict the state transition function. *e algo-
rithm is also known as the RBPF SLAM algorithm, named
after the use of Rao–Blackwellized particle filters. In [11],
two major improvements were made by optimizing the
proposal distributions and introducing adaptive resampling,
making the algorithm much more suitable for practical
applications. It is then dubbed GMapping (G for grid) due to
the use of grid maps.

3.1.1. RBPF. Onboard measurements include sensor data
from Lidar or camera for images and odometer data from
the IMU. A large number of particles are used for state
transition function predictions, with each particle repre-
senting a possible position of the robot.

*e sensor data are denoted by (z1:t � z1, z2, . . . , zt) and
the odometer data by (u1:t � u1, u2, . . . , ut−1) for the time
period from 1 to t. *ey are used to estimate the joint
posterior probability p(x1:t, m|z1:t, u1:t−1) of the robot pose
(x1:t � x1, x2, . . . , xt) and the grip map of the environment,
represented by m. Using the Bayes’ rule, the posterior
probability can be decomposed into

p x1:t, m|z1:t, u1:t−1( 􏼁

� p x1:t|z1:t, u1:t−1( 􏼁p m|x1:t, z1:t( 􏼁,
(1)

where p(x1:t|z1:t, u1:t−1) is the positioning problem, whereas
p(m|x1:t, z1:t) is the mapping problem. *e so-called im-
portance sampling is used in the RBPF. *e procedure is as
follows:

(i) Sampling: according to the given (previous) proposal
distribution, particles (x

(i)
t−1) from the previous

generation are sampled. *ey are then improved by
incorporating the most recent observations. *en,
new particles (x

(i)
t ) and proposal distributions are

generated.
(ii) Weights: the weight w

(i)
t of each current particle x

(i)
t

is calculated using

w
(t)
t �

p x
(i)
1:t|z1:t, u1:t􏼐 􏼑

π x
(i)
1:t|z1:t, u1:t−1􏼐 􏼑

, (2)

where π(·) is the proposal distribution, which
usually is a probabilistic odometry motion model.
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(iii) Resampling: depending on the weights, particles
with smaller weights are discarded and replaced by
resampled particles, but the total number of par-
ticles in the resampled particle set is unchanged.

(iv) Map updating: the map update is implemented by
the pose represented by each particle in combina-
tion with the current observation. To reduce the
computational complexity, a recursive formula for
weight update is used:

w
(i)
t � w

(i)
t−1η

p zt|x
(i)
1:t, z1:t−1􏼐 􏼑p x

(i)
t |x

(i)
1:t−1, u1:t−1􏼐 􏼑

π x
(i)
1:t|z1:t, u1:t−1􏼐 􏼑

, (3)

where η is a normalisation factor.

3.1.2. Proposal Distribution. A large number of particles will
cause a large amount of calculation andmemory consumption.
In order to reduce the number of particles, a proposal dis-
tribution is used. Our target distribution is the best distribution
of the robot state according to the data of all sensors carried by
the robot. Except for the odometermodel, the laser observation
data is the position information of 360-degree points, which is
difficult to performGaussianmodelling.*us, there is no direct
way to sample the target distribution, and the proposal dis-
tribution is used instead of the target distribution to extract the
robot pose information at the next time instant. *e proposal
distribution considers not only the motion (odometer) in-
formation but also the most recent observation (laser) infor-
mation.*is canmake the proposal distribution more accurate
and closer to the target distribution.

Power supply
system

Motor control
module

STM32 robot
control module IPC Lidar

Encoder Gyroscope RGB-D

WiFi

PC

Figure 1: System structure of our mobile robot. “STM32 robot control module” gets information of motors from “encoder” and motion
from “gyroscope” to control motors and transfer the motion and encoder information to “IPC” which is a microcomputer.*en, “IPC” gets
information from Lidar, “STM32 robot control module,” and RGB-D camera.

(a) (b)

Figure 2: Key modules of the robot. (1) “RGB-D,” used to get RGB image and depth image; (2) “lidar,” used to get 2D lidar point cloud; (3)
“STM32 controller,” used to control the movement of the car; (4) “gyroscope,” used to get the attitude information; (5) “WI-FI,” used to contact
with the host computer; (6) “power supply system”; and (7) “motor and encoder,” used to get the velocity feedback of the car movement.
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*e sensor observation information is added when
calculating the proposal distribution, and the sampling
process is concentrated in the peak region of the like-
lihood function to get the optimal proposal distribution:

p xt|x
(i)
t , m

(i)
t−1, zt, ut−1􏼐 􏼑 �

p zt|xt, m
(i)

􏼐 􏼑p xt|x
(i)
t−1, ut−1􏼐 􏼑

p zt|x
(i)
t−1, m

(i)
, ut−1􏼐 􏼑

.

(4)

*en, the weights are updated according to the above
weight recursion formula:

w
(i)
t � w

(i)
t−1η

p zt|xt, m
(i)

􏼐 􏼑p xt|x
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t−1, ut−1􏼐 􏼑
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(i)
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,

∝w
(i)
t−1η

p zt|xt, m
(i)
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(i)
t−1, ut−1􏼐 􏼑

p zt|x
(i)
t−1, m

(i)
, ut−1􏼐 􏼑

,

� w
(i)
t−1p zt|x

(i)
t−1, m

(i)
, ut−1􏼐 􏼑.

(5)

*e Gaussian distribution is used to approximate the
approximated peak region of the observation, and
the optimal proposal distribution is obtained. *e
Gaussian distribution parameters, i.e., the means μ(i)

t

and covariances 􏽐
(i)
t , are determined using K sampling

points:
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􏽘
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􏽘
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1
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􏽘
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(i)
t−1, ut−1􏼐 􏼑,

· xj − μ(i)
t􏼐 􏼑 xj − μ(i)

t􏼐 􏼑
T
,

(6)

where the normalising factor η(i) is given by

η(i)
� 􏽘

K

j�1
xjp zt|xj, m

(i)
t−1􏼐 􏼑p xj|x

(i)
t−1, ut−1􏼐 􏼑. (7)

3.1.3. Adaptive Resampling. Resampling may cause good
particles to be removed from the filter, making the par-
ticles scarce. *erefore, it is necessary to judge the quality
of the particles by the effective sampling scale standard
and judging the time of resampling. *e evaluation for-
mula is as follows:

Neff �
1

􏽐
N
i�1 􏽥w

(i)
􏼐 􏼑

2, (8)

where N is the number of particles and 􏽥w(i) is the weight of
the ith particle.*e worse the proposal distribution estimate,
the smaller the Neff is. When Neff < (1/2)N, GMapping
performs resampling.

3.2. Hector-SLAM Algorithm. *e Hector-SLAM algorithm
[12] differs from other grid-based mapping algorithms, as it
does not require odometer information, but it needs laser
data and a priori map. Hector-SLAM is based on the
Gauss–Newton iteration formula that optimally estimates
the pose of the robot as represented by the rigid body
transformation ξ � [px, py,ψ]T from the robot to the prior
map. *e optimal estimation is done by optimally matching
the laser data and the map in the sense that the optimal ξ∗

below is solved:

ξ∗ � argminξ 􏽘

N

i�1
1 − M Si(ξ)( 􏼁􏼂 􏼃

2
. (9)

Here, M(Si(ξ)) is the value of the map at Si(ξ), and Si(ξ)

is the world coordinate of scan end points si � (si,x, xi,y)T,
which obeys the following function:

Si(ξ) �
cosψ −sinψ

sinψ cosψ
􏼢 􏼣

si,x

si,y

⎡⎣ ⎤⎦ +
px

py

⎡⎣ ⎤⎦. (10)

When an initial estimate of the pose ξ is given, an
updated estimate ξ + Δξ is computed by approximating
M(Si(ξ + Δξ)) using first-order Taylor expansion, and the
result is as follows:

Δξ � H
− 1

􏽘

N

i�1
∇M Si(ξ)( 􏼁

zSi(ξ)

zξ
􏼢 􏼣

T

1 − M Si(ξ)( 􏼁􏼂 􏼃, (11)

where H is the Hessian matrix or some approximation of it,
given by

H � ∇M Si(ξ)( 􏼁
zSi(ξ)

zξ
􏼢 􏼣

T

∇M Si(ξ)( 􏼁
zSi(ξ)

zξ
􏼢 􏼣. (12)

3.3. Cartographer Algorithm. When the amount of data to
process becomes too large, particle-based algorithms are not
applicable due to their higher computing requirements on
the processor. In this case, graph optimisation algorithms
are more suitable.

Google’s solution to SLAM, called Cartographer, is a
graph optimisation algorithm. *e Google open source
code1 consists of two parts: Cartographer and Cartogra-
pher_ROS. *e function of Cartographer is to process the
data from Lidar, IMU, and odometers to build a map.
Cartographer_ROS then acquires the sensor data through
the ROS communicationmechanism and converts them into
the Cartographer format for processing by Cartographer,
while the Cartographer processing result is released for
display or storage. Impressive real-time results for solving
SLAM in 2D have been described in [13] by the authors of
the software.

3.4. Considering the Rescue Environment. In rescue envi-
ronment, there are stairs and rugged surface which make the
odometer inaccurate. It means we could not choose
GMapping because it is very rely on odometer. Due to the
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rugged surface, IMU is also inaccurate which means Car-
tographer may get bad results. So, we choose Hector-SLAM.

4. Path Planning

To achieve path planning is to solve three basic problems:

(1) *e robot reaches the desired position
(2) *e obstacle avoidance and completion of the

strategic task are achieved in the moving process
(3) *e optimal path is realized

However, in the actual environment, due to the accuracy
of the robot sensor and the variability of the environment,
the environmental information and location information of
the map construction will be deviated [14]. Global planning
in a static environment can meet the problem requirements,
but to handle the deviation caused by the dynamic envi-
ronment, local path planning needs to be introduced.*at is
to say, the local path planning pays more attention to ob-
stacle avoidance, and the global path planning pays more
attention to the shortest path. *erefore, the combination of
local planning and global planning algorithms can suc-
cessfully achieve accurate navigation of the robot. *e global
planning algorithm studied in this paper is a node-based A∗

algorithm [15, 16], and the local planning algorithm is a
dynamic window algorithm (DWA) [17]. Global path
planning produces a high-level plan for the robot to follow to
reach the goal location. Local path planning is responsible
for generating velocity commands for the mobile unit to
safely move the robot toward a goal. *ese properties are
imbedded in the plan produced by the planners, using the
cost function which takes into account both distance to
obstacles and distance to the path.

4.1.GlobalPathPlanning. Based on the global path planning
of the grid method, the A∗ algorithm is used to study the
path planning.*e A∗ algorithm follows the cost function to
make the robot to directionally search for the path toward
the end point. *e core valuation function of the A∗ al-
gorithm is

f(n) � g(n) + h(n), (13)

where the node n is abstractly understood as the next target
point, f(n) represents the total valuation function of the
current node n, g(n) represents the actual cost of the starting
point to the current point, and h(n) represents the estimated
cost of the current node to the end point. *e value of h(n)

determines the performance of the algorithm. Typically,
h(n) uses the Euclidean distance or Manhattan distance
between the two points in space. In the A∗ algorithm, the

Manhattan distance is used. *e Manhattan distance be-
tween two points (x1, y1) and (x2, y2) is as follows:

DManhattan � x1 − x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + y1 − y2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (14)

4.2. Local Path Planning. *is paper mainly studies the
corresponding action strategy and operation of robot for
path navigation in indoor environment. For this reason, the
DWA algorithm is selected as the main algorithm for local
path planning. *e DWA algorithm requires the robot to
perform numerical simulation calculations on the path of
the robot within a certain speed window.*us, it is necessary
to obtain the model state expression of the robot. *e two-
wheeled robot based on differential drive has no velocity in
the y-axis direction. Since the robot is at the millisecond
level in each sampling period of the program execution, the
motion trajectory of the robot in the two adjacent sampling
periods can be approximated as a straight line. In a period of
time Δ, the robot travels a small distance at speed v, and it is
at an angle θt to the x-axis; then, the movement increments
Δx and Δy of the robot on the x-axis and the y-axis can be
obtained, respectively:

Δx � x + vΔt cos θt( 􏼁, (15)

Δy � y + vΔt sin θt( 􏼁. (16)

*e robot’s movement trajectory is then given by

xt+1 � xt + vΔt cos θt( 􏼁, (17)

yt+1 � yt + vΔt sin θt( 􏼁, (18)

θt+1 � θt + ωΔt, (19)

where ω is the angular velocity of the robot.
During the speed sampling of the robot, multiple sets of

trajectory velocity values are collected. To make the robot
safely perform path planning, some necessary speed limits
are also needed. *e speed velocity value and angular ve-
locity value of the robot change within a certain range, and
the range needs to be empirically calculated according to the
physical characteristics of the robot and the operating en-
vironment. *e range formula is as follows:

Vm � (v,ω)|v ∈ vmin, vmax􏼂 􏼃,ω ∈ ωmin,ωmax􏼂 􏼃􏼈 􏼉. (20)

*e robot has different torque performance parameters
due to different motor models. When the current speed of
the robot vc and the angular velocityωc are known, the actual
speed range for the next sampling time can be computed as

Va � (v,ω)|v ∈ vc − _vdΔt, vc + _vaΔt􏼂 􏼃,ω ∈ ωc − _ωdΔt,ωc + _ωaΔt􏼂 􏼃􏼈 􏼉, (21)
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where _va and _ωa are the maximum accelerations and _vd and
_ωd are the maximum decelerations.

When the robot is safely avoiding obstacles in naviga-
tion, the speed (v,ω) during the whole locally planned
trajectory must be within the range of speeds given by

Vd � (v,ω)|

����������

2dis(v,ω) _vd

􏽱

≥ vc,

�����������

2dis(v,ω))ωd

􏽱

≥ωc􏼚 􏼛,

(22)

where dis(v,ω) is the minimum distance from the current
position to the point where the arc trajectory of v and w

intersects the nearest obstacle.
Performing the DWA algorithm for speed selection

needs to satisfy equations (19)–(21) simultaneously. On the
basis of the trajectory that satisfies these speed requirements,
an evaluation function is used to measure a selected tra-
jectory and to aim the selection of the optimal trajectory.*e
evaluation function is as follows:

G(v,ω) � σ(αhead(v,ω)) + βdis(v,ω) + cvel(v,ω), (23)

where head(v,ω) represents the angle difference between the
estimated end of the route and the target; dis(v,ω) is the
minimum distance from the obstacle to the planned tra-
jectory, as explained above; vel(v,ω) indicates the moment
speed evaluation; σ(·) is a smoothing function; and α, β, c> 0
are evaluation coefficients.

5. Experimental Results

5.1. Simulation Experiments

5.1.1. SLAM Simulation. In order to test the aforementioned
algorithms, we carry out simulation experiments using the
Gazebo platform to build the simulation environment
shown in Figure 3.*e virtual environment has real physical
properties, and the simulation results have strong reference
to the actual environment.

*e following simulation experiment was performed
according to the virtual environment. We first use Lidar as a
sensor to simulate the GMapping, Hector-SLAM, and
Cartographer algorithms. We then use depth camera (RGB-
D) as a sensor to simulate the GMapping algorithm. Four
mapping algorithms under the physical simulation platform
of the ROS robot system are tested, and the simulation
results are shown in Figures 4–7. *e purpose of presenting
these diagrams is to give an impression of the algorithms
described above, which are parsed using text and formulas.

Figure 4 shows the robot simulation process using
GMapping. Depth information of the Lidar is required. *e
robot is located in the lower left corner of simulation en-
vironment, the data collected by the Lidar is marked in red,
and the established environment map is in light gray. Fig-
ure 5 shows the robot simulation process using Hector-
SLAM. Figure 6 shows the robot simulation process using
Cartographer. *e area scanned by the Lidar changes from
light gray to white until the whole map is completed.

Figure 7 shows the final grid map constructed using the
RGB-D camera data. *e depth data are first transformed
using depthimage_to_laserscan before being applied to

GMapping.*e simulation results show that the constructed
map is not ideal. *is is because the RGB-D camera is af-
fected by its own structure, causing a limited range of
viewing angle [18]. In addition, the depth camera requires
rich scene features to work. *e simulated environment has
smooth wall surfaces with very few scene features, making
the depth camera unable to perform effective feature
matching. We see that map construction cannot be suc-
cessfully completed.

5.1.2. Path Planning Simulation. After obtaining the envi-
ronment map, the map was loaded under the ROS frame-
work for path planning purposes. We use the rviz package
under the ROS framework for path planning and navigation
simulation. *e constructed map is shown in the left part of
Figure 8. Here, we also see the black dot indicating an
obstacle, and the cyan portion indicates the safe distance
between the robot and the obstacle. *e green arrow points
to the target point and direction of the robot. *e right part
of Figure 8 shows the path planning and navigation results,
as indicated by the green line. *e starting position for the
robot is slightly below the obstacle.We see that the simulated
path not only successfully avoids the obstacle but also is a
nearly straight path.

5.2. Algorithm Verification in Lab Environment

5.2.1. Emulated Rescue Experiment. In this experiment, a
1.25m × 1.25m square wooden structure was used to
splicing the actual environment in an open laboratory, as
shown in Figure 9. *is was built with reference to the
RoboCup rescue venue to simulate an enclosed indoor
rescue environment after a disaster. *e aforementioned
SLAM algorithms are applied, and the results are shown in
Figure 10. Comparing with the simulation results, the maps
constructed in the actual environment using Lidar data
(GMapping, Hector-SLAM and Cartographer) are all sat-
isfactory. In the RGB-D experiment [19, 20], the environ-
mental features are not sufficient for depth measurements,
resulting in an overlapped map. *erefore, the mapping
algorithm based on the depth camera needs further
optimisation.

5.2.2. Lab Office Experiment. Next, we test the SLAM al-
gorithms in a real lab office, as shown in Figure 11. *e map
in Figure 12 is constructed using the Hector-SLAM algo-
rithm. We see that not only desks are clearly identified but
also the chair legs are clearly shown.

Path planning is carried out using the A∗ algorithm for
global path planning and DWA algorithm for local path
planning, and the results are shown in Figure 13. In the
picture on the left, the navigation target point and direction
of the robot are set by the green arrow.*e small green patch
at the bottom shows many arrows representing the particles
(their positions and directions) of the starting pose of the
robot.*e right picture shows that, after the execution of the
path planning and navigation, the robot moves to the target
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(a) (b)

Figure 3: Simulation environment diagram and Gazebo display.

1 2 3 4

Figure 4: Mapping result of gmapping (simulation).

1 2 3 4

Figure 5: Mapping result of Hector-SLAM (simulation).
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point, as indicated by the (smaller) green patch representing
the particles of the final pose. We see that the experimental
results verify the effectiveness of the path planning
algorithms.

5.2.3. RoboCup Competition Test. *e mapping and path
planning algorithms above are used in our entry of the 2019
RoboCup competition for indoor rescue [21]. *e compe-
tition venue is shown in Figure 14. *e competition re-

1 2 3 4

Figure 6: Mapping result of Cartographer (simulation).

Figure 7: Mapping result of RBG-D (simulation).
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Figure 9: Emulated rescue environment.

(a) (b)

Figure 8: Simulation result of path planning.*e green arrow on the left picture means the orientation of the robot when it reaches the end.

(a) (b)

Figure 10: Continued.
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quirements are as follows: robot constructs the map of the
competition venue by self-exploration and completes the
recognition of the doll and the marking of the QR code. *e
robot operates by either remote control or through an au-
tonomous exploration algorithm. In addition, the robot
must avoid obstacles. *e quality of the mapping result is

assessed by the number of closed grids identified in the
constructed grid map. Because GMapping and Cartographer
need IMU to assist positioning, and in uneven terrain in the
competition, IMU data will have very large errors, which
leads to very large errors in these two SLAM algorithms.*e
RGB-D algorithm also does not perform well in flat terrain,

(c) (d)

Figure 10: Constructed map: (a) RGB-D, (b) Hector-SLAM, (c) GMapping, (d) Cartographer.

Figure 11: Lab office environment.

Figure 12: Hector-SLAM map for lab office.
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so we use the Hector-SLAM algorithm for mapping. And we
use the Hector_navigation open source software package
[22] for robot self-exploration. As shown in Figure 15, due to
the complex environment of the competition venue, the
robot is unable to pass some obstacles, such as the 15-degree
slope and stairs, so certain parts of the venue cannot be
scanned by the Lidar, and the constructed map is incom-
plete. Due to the limitation of the robot hardware, it is not
possible to finish all the mapping. But all the places reached
by the robot have been well-mapped. Finally, we scored 14
points (out of 27 points) in the self-exploration session.

5.2.4. China Robot Competition. Compared with the
RoboCup competition venue, the 2019 China Robot
Competition venue has a larger site area and a larger slope,
which means that the terrain is more complicated, as shown
in Figure 16. *e competition requires rescue robots to
independently explore the map of the field and identify the

two-dimensional code on the box in the simulated post-
disaster environment. In this experiment, we continue to use
the Hector_navigation open source software package for
robotic exploration. *e route of the robot’s autonomous
navigation is shown in Figure 17.We used two servos to keep
the Lidar level, which is used to automatically adjust the
Lidar to a horizontal position. However, due to the fact that
the competition field is not flat, which causes the robot to
have large fluctuations during the movement, the Lidar is
unable to adjust the pose in time. As shown in Figure 18, the
yellow arrow indicates the starting point of the rescue robot,
the purple line marks the movement trajectory of the rescue
robot, the dark blue line represents the map constructed by
the SLAM algorithm on the competition venue, and the dark
blue circle with numbers represents the location of the QR
code. However, the robot is navigated outside the wall. As a
result, there is a positioning error. *e map cannot be
quickly updated for corrections, and the navigation algo-
rithm may incorrectly navigate the robot into an obstacle.

(a) (b)

Figure 14: RoboCup venue.

(a) (b)

Figure 13: Path planning for lab office.
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(a) (b)

Figure 16: China robot competition venue.

(a) (b)

Figure 15: Mapping result of Hector-SLAM (RoboCup).

(a) (b)

Figure 17: Continued.
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*erefore, the Hector-SLAM algorithm needs to be im-
proved in the update speed, and the navigation algorithm
should adopt a more cautious strategy according to the
application of the rescue scenario. As shown in Figure 18, an
unnecessary closed point appears on the periphery of the
constructed map. In addition, the number in the figure is the
position information of the recognised QR code.

In the above simulation experiments and field experi-
ments for GMapping, Hector-SLAM, Cartographer, and
RGB-D mapping algorithms, GMapping, Hector-SLAM,
and Cartographer perform better in a flat indoor environ-
ment. *e RGB-D mapping algorithm has poor mapping
effect due to poor lighting conditions and lack of envi-
ronmental features. *erefore, in a relatively flat indoor
rescue environment, it is more appropriate to choose the
first three algorithms as the basis of the SLAM system. In the
RoboCup competition and the China Robot Competition,
the uneven rescue environment seriously interfered with the
IMU data, so the SLAM algorithm (GMapping and Car-
tographer) incorporating IMU data could not perform

SLAM tasks normally. *is causes the path planning algo-
rithm that relies on map information to not work correctly.
*e Hector-SLAM algorithm, which does not rely on IMU
data, can perform tasks in the competition terrain relatively
correctly, but there are still problems with inability to filter
wrong Lidar information and poor stability.

6. Conclusions

In this paper, the problem of indoor rescue using mobile
robots was studied. Comparisons were done on the
GMapping, Hector-SLAM, and Cartographer algorithms for
SLAM. *e path planning was done by combining the A∗

algorithm for global path planning and the DWA algorithm
for local path planning. Simulation, emulation, as well as real
environment experiments were conducted to compare and
validate the results on map construction and path planning.
In the future, further optimisation needs to be carried out in
the mapping algorithms to make them more suitable to the
real rescue environment.

Figure 18: Mapping result of Hector-SLAM (China Robot Competition). Because the level keeping platform of the radar is not sensitive
enough, and it cannot be adjusted and keep the platform in time when the robot crosses obstacles, the radar may scan the walls outside the
field. Hector cannot judge and filter, so it is recorded on the map.

(c) (d)

Figure 17: Mapping result and autonomous navigation route (China robot competition). (a) 1, (b) 2, (c) 3, (d) 4.
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Data Availability

Our experiment data can be found in https://github.com/
9393dl/Rescue_Robot.
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